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I? Introducti ion 

The work  for this  research contract on atmospheric-pressure 

gas lasers had as  its main objectives the generation of short 

laser pulses  through mode  locking and cavity dumping,   the study 

of the nonlinear amplification processes  in  a transversely excited 

atmospheric pressure laser,   and development of computer programs 

to check  the observed amplifier responses  against models of the 

relaxation processes of the    C02    molecule  in a laser discharge. 

Thus,   the proposed investigation  concentrated on three  methods 

by which pulses  could be made both more energetic and of  shorter 

duration: 

(a) mode locking 

(b) cavity dumping 

(c) nonlinear amplification. 

The work on nonlinear processes in    C02     systems was origin- 

ally begun in order to demonstrate  the possibility of amplifying 

pulses  of duration short compared with  the  inverse bandwidth  of 

the amplffying medium,  without the  undesirable pulse-broadening 

associated with  linear amplification.     Obviously,   this  can be  done 

only if the effective bandwidth of  the nonlinear amplification is 

broader than  that of linear amplification.     Line broadening due 

to optical saturation by    cw    radiation is well known.tl]     The 

purpose was  to demonstrate-that,  dynamically,   line broadening via 
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»aturaUon could be  utilized to amplify over a broader bandwidth 

than  that accorded to linear amplification,     it was  also hoped 

that dynamic pulse  shaping could be  utilized to lead to additional 

pulse shortening.^2!    This  dynamic pulse shaping is  closely related 

to  the optical  "nutation" effect.^     The principle of pulse shaping 

and shortening by optical nutation was  demonstrated141   just before 

the initiation of the present contract. 

The work  under this  contract was  concerned with the improve- 

ment of the pulse shaping and shortening,   and with the effort to 

increase energy extraction in the nonlinear amplification.     The 

modelocking-cavity dumping schene to produce single,  high power 

pulses was  abandoned in  favor of a pulse selection outside  the 

cavity,     it turned out that the ultimate power achievable by the 

pulse  selection  outside  the  cavity was higher  than  the  one  achieved 

through  cavity, doping.     The electrooptic crystal used  for cavity 

dumping depressed  the peak power of the  laser more  than  the  loss 

of power due  to the partial mirror transmission.    With a conven- 

tional    TCA    laser,  pulses of    500 kW    peak power and    2  ns    long 

were obtained.     These were  used as  the experimental probe  for 

short pulse  amplification studies. 

These  studies were  aimed at determining  the   limits on energy 

extraction  and achievable pulse-widths  in  the pulse generation 

and nonlinear amplification.     One problem encountered in the 

amplification of short pulses in    C02     is  the incomplete eneroy 

extraction  from the  rotational  levels  if the pulse  duration becomes 

comparable  to the  rotational relaxation time. 

— 
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In  fact the extraction time of the energy  from all rotational 

levels  is  roughli" Neff T-^i    where    Trot    is the rotational 

relaxation  time  and    N   -,    is  the effective number of rotational err 
levels   (a  function of temperature,   a number of the  order of     10) . 

One  of our studies  concentrated on  the  utilization of the energy 

stored in  tha  vibrational  levels  as  discussed in Section I. 

In  the  analysis of  the  data of Section  I,  we used a computer 

program that treated the  rotational-vibrational  relaxation of    CO- 

under short-pulse excitation.     This  computer program was  developed 

by A.   Ross  of  this   laboratory who was supported by  a NSF contract. 

The  computer program used curves obtained by Nighan'6'   for the 

pumping rates of  the energy  levels by  the  discharge.     Nighan's 

work  is based on  a  full  treatment of the  Boltzmann equation  and 

the evaluation of the pumping rates  requires  an elaborate  computer 

program and considerable computer time.    We  considered it expedient 

to develop an  analytic  theory of electronic pumping rates  using 

approximate  cross  sections   for the  vibrational  and electronic 

excitation  rates.     The   advantage of this   approach  is  that it .lends 

insight into  the  important mechanisms determining laser efficiency. 

A description of the theory  forms section II,   details  appear in 

the   literature.^ 

The  study of energy extraction by short pulses  showed  the 

importance of obtaining short  and energetic pulses by the mode- 

locking process   in  the  first place.     Saturable  absorber modelockxng 

has,  thus  far,  produced much shorter modelocked pulses  than  forced 

modelocking in those  systoms in which both methods have been 
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employed successfully.     Therefore we looked seriously at mode- 

locking of the    C02     system by saturable  absorbers,  both experi- 

mentally and theoretically.    We   found that no  adequate  analytic 

theory of saturable absorber mode locking has been published in 

the literature.     Therefore, we set out to develop such  a theory 

with  ti.e aim of attaining a description of saturable absorber 

modelocking as  complete  as   that presented by Kuizenga and Siegman[8J 

for  forced modelocking.     We were successful  in doing  this.    We 

believe that the  theoretical work on saturable  absorber modelocking 

is  the most important success of the work performed under this 

contract.    Three papers on  the subject of modelocking have  appeared, 

or will appear shortly/9'10'111    The  l^t- «f M,«.,« .   . rr *' ine  J-ast of these was carried out 

at Bell Laboratories by  the principal investigator,   who spent a 

year with the group working on modelockin j of dye  lasers   (Prof. 

Szöke took his-place during his absence).    A further paper has 

been submitted for publication.     It forms Appendix    I.    We shall 

not reproduce the papers here but give,   in Section III,   an account 

of the salient features of the theory and its success  in explaining 

certain experimental observations on passively modelocked systems. 

The experimental work on saturable absorber modelncking con- 

centrated on the    C02     system using    SF6    as  a saturable absorber. 

In order to describe  the action of the    SFg     absorber adequately, 

a model of    SFg    was developed which accounts better for the  trans- 

ient absorption of    SFg     as  a function of pulse energy and pulse- 

width  than previously proposed models. [12'13J     This  topic is taken 

up in Section IV. 
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Lz Energy Extraction from Non-Lasing Vibiational Levels 

As mentioned in the introduction, we found it expedient to 

select modelocked pulses outside the cavity, rather than via 

cavity dumping, because the final energy of the pulse was higher 

with this method of pulse selection.  Also, in this way more than 

one pulse could be "clipped" from the pulse train.  Two pulses in 

succession were used to probe the vibrational population recovery 

in a C02 TEA amplifier and hence the possibility of additional 

energy extraction from the amplifier, within times corresponding 

to the vibrational relaxation times. 

The amplifier was filled with a mixture of C02, N  and 

helium at 200 Torr and the partial pressure of C02 was varied 

in the experiment from 5 Torr to 40 Torr.  The individual input 

pulse lengths were 2 ns,  the spacing between the pulses,  12 ns. 

The first laser pulse was made to enter the amplifier ^30 ps 

after the application of the discharge current pulse. The re- 

covery of the gain of the second pulse as a function of partial 

pressure of C02 was determined. The total pressure in the 

amplifier was sufficient for appreciable equilibration of.  the 

rotational population distribution within the duration of one 

pulse. Furthermore, since the rotational relaxation is mainly a 

function of the total pressure, and not of the partxal pressure 

of C02,  variation of the partial pressure did not affect the 
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recovery time of  the  rotational population distribution.     There- 

fore  the  increased  recovery as  a  function of increasing pressure 

is  attributable  to    V-V    relaxation processes.     The  level which 

has  an  appreciable  population  after equilibration of the vibra- 

tional  temperatures  and which  can   feed the  upper liser  level  ap- 

preciably within     12 ns     at the partial pressure  used  is   the    Oil 

level.    Hence  this experiment ascertains  the  rate  of relaxation 

of the    Oil     level  and  the  degree of population  recovery by means 

of this  relaxation process.     Figure 1  shows   the  result of the 

experiment.     At the  very low partial  pressures,  when  the  relaxation 

mechanism is not operative within     12  nsf     the  gain of the second 

pulse  compared with  that of  the  first one has been  reduced by    20% 

because  of  the population  depletion of  the  first puise.     The ex- 

perimentally observed  recovery as  a  function of partial pressure 

is shown.    Two-theoretical  curves  computed on  the  assumption that 

tfcl  recovery is  due entirely  to the  feeding of  the  upper  laser 

level by the    Oil    level population are shown as dashed curves. 

The  two curves were  computed  for two values of population  inversion 

changes  consistent with  the  gain  changes caused by  the  first pulse. 

This  shows  that  the major portion of the  recovery  is explainable 

by this  mechanism,     ihe   fact that  the experimentally observed 

recovery is  larger than  the one predicted on the basis  of the    Oil 

level  relaxation is  attributable  to the more effective relaxation 

of the  lower laser level with increasing partial pressure,   an 

effect not taken intc account in the theory which  assumed that 

even at the  low partial pressures the lower laser level  relaxes 

ir«—-M—^—iM—I—f -   . . 
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completely within the    12-ns    interval. 

Details of the experiment are given in the RLE Quarterly 

Progress Report No.  111.  Oct.   15,   1973.     ^e  theoretical compu- 

tations  are  contained in the Masters  thesis of y.  Haniohaikul.'"1 

The conclusion drawn  from the eXperiTOnt is  that energy storages 

available in vibrational combination modes can be utilized if 

the pulse to be amplified is lengthened.    The present experiTOnt 

indicates the magnitude of the effect and the tU. scales  at which 

such utilization occurs. 

__ — 
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II.     Electron  Distribution  and Lasing Effi cien £Z 

Computer codes evaluating  the electron distribution and the 

pumping of laser levels have been  developed in  several  laboratories, 

notably  at United Aircraft Corporation.11^     whereas  good quantita- 

tive  results  can be  obtained  from these programs,   it is  difficult 

to cull   from them physical  insight about the  influence of discharge 

parameters  on gain  and lasing efficiency,  without carrying out 

costly computations.    With  this  in mind,  we have  developed a sim- 

plified model  for the electron  distribution and the pumping of the 

electron  laser  levels which  is  amenable   to closed-form solutions. 

The details of this work have been published.t71     Here we give a 

brief summary of the salient  features. 

The energy  transfer of  the electrons  to the  vibrational  levels 

and to the electronic radiation levels   (which  are useless energy 

sinks  in the case of a    IR    molecular laser)   is controlled by the 

shape of the velocity distribution  function of the discharge 

electrons.    This distribution  function is  approximately spherically 

symmetric and hence describable  in  terms of a function    f  (v)     of 

a scalar    v,     the magnitude of the electron velocity. 

The basic equation governing    fo(v)     is derived from the 

Boltzmann Equation: 

4« ^L 
dv . 3  Vm/    v       dv J \3t / 

inel 
(1) 

■ 

,_-_. 
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where    vc    is  the  frequency of momentmn transfer collisions and 

E    is the electric field in the discharge.    The term on the  left- 

hand side  represents  the  rate of entry of electrons into the 

velocity range    v,     v + dv    produced by the driving electric field. 

The  rate of entry of electrons is equal  to the rate of exit caused 

by the  inelastic collisions,   the  term on the right-hand side  of 

the equation.     The  distribution  fuction     f   (v)     is normalized: 

J 4TTV2   f0(v)   dv =  1. 

An analytic treatment results  from an appropriate modeling of the 

inelastic collision term on the right hand side of  (1).    One  ap- 

proximates  the  collision cross sections of the electrons with  the 

molecules,  which exhibit resonant peaks  as  functions of energy, 

by  impulse   functions of energy.     The main collision processrs  are 

the vibrational energy excitations with peaks near    2 eV     (for 

N2    and C02),    and electronic excitations, with peaks that may all 

be  lumped into a single excitation cross  section,   as long as  the 

average electron energies are as low as  those generally produced 

in molecular-laser gas discharges. 

With these assumptions,   closed form solutions can be ob- 

tained  for    fo(v)     (or    fo(u)     where    u = mv2/2c) . 

Some interesting conclusions were obtained from the  analysis. 

(a) In an E-beam excited discharge we find that the V-I 

characteristic of the sustainer electrodes remains unchanged by 

the presence,  or absence,  of lasing.     For a given power input 

 ■ '   -   - Ml 
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per unit volume,  lasing redistributes  the  flow of energy among 

the  levels,   changes  the electron distribution,  but does not affect 

the conductivity of the medium.    This conclusion  turned out to be 

rather model independent.     The sole source  for this somewhat sur- 

prising result is  the  assumption that the elastic collision 

frequency is energy independent. 

(b)     ThG efficiency of a    E-beam laser peaks  at a value of 

electric field that maintains  the  average energy of the electrons 

well below    2 eV,     the energy at which the vibrational excitation 

cress section was assumed to peak.    The reason  for the rapid de- 

crease of efficiency with  increasing electric  field beyond this 

critical field is  that the energetic  "tail" of the electron dis- 

tribution excites the electronic levels excessively. 

While these  conclusions  could have been  culled from Nighan's 

computer analysis,  it is helpful that the analytic treatment reaches 

these  conclusions  in a   transparent way and,   in  fact,   gives  results 

even in   (approximate)   quantitative agreement with Nighan's results. 
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III.     Theory of Passive  Modelocking of a Homogeneously 

Broadened Laser 

The purpose of the new theory of passive modelocking'9'10'11^ 

is to provide an analytic description of the phenomenon equivalent  to 

the one presented by Siegman  and Kuizenga'8^   for the  case of active 

modelocking.    Passive modelocking is a phenomenon more  complicated 

than  active   (forced)   modelocking because  the modulation provided 

by  the saturable  absorber is  a function of the pulse  amplitude 

and shape passing through  the  absorber,   and depends on the relaxa- 

tion time of the  absorber. 

just as in  the case of active modelocking,   the theory ot 

passive modelocking is concerned at first with    cw    operation, because 

it is  simpler.    We shall  first outline  the theory and  then present 

arguments that many results of the theory are applicable  to the 

transient buildup of modelocking. 

The  analysis  makes  the   following assumptions  and approximations: 

(a) The laser medium is homogeneously broadened. 

(b) A pulse passing through  any one of the elements of the system, 

saturable absorber,   gain medium,  etc.,   is modified only 

slightly  (say 20 percent gain or loss)   on one  single pass. 

Thi.s  assumption enables one  to expand exponentials  to first 

order in their argument. 

(c) The dispersion of the  system as a function of  frequency may 



12 

be expanded to  second order  in  frequency   (this   assumption 

is  legitimate  if  the  laser pulse spectrum is narrow compared 

with the bandwidth of the system) . 

Under these assumptions one  arrives  at the  following equation for 

the envelope    v(t)     of the electric  field,    B(t)   = v(t)   exp jM t, 

of the pulse traveling in one  direction between  the mirrors oAhe 

the  laser cavity: 

v{t)   - 0 (l) 

Here  the  factor    1    expresses  the effect of the normalized cavity 

loss on  the pulse,     jb    is  the reactive effect caused by oscillation 

of the  cavity modes off their natural resonance  frequency; 

dispersive laser medium gain on  the pulse envelope;     «       is  the 

laser medium linewidth  and    g    is   the  gain  at line  center per pass 

normalized to the loss per pass.     The operator    dVdt2     is  a dif- 

fusion operator in  "time-space" which  accounts  for the spreading 

of the pulse in time because of medium dispersion.     The operator 

—S --    describes the net time  advance    6T     (or delay    -fiT    of 
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the pulse) with respect to the empty cavity roundtrip time T 

of the cavity as caused by the laser medium dispersion, as well 

as that induced by the modelocking modulation m(t)  of the mode- 

locking element. Equation (1) sets equal to zero the sum of the 

modifications of the pulse due to cavity loss, laser gain, pulse- 

advance and modulation, i.e. it states the requirement of a steady 

state.  The fundamental relation (1) describes both the forced, 

and passive methods of modelocking.  Indeed, if the modelocking is 

forced, then 

m(t) = 2M[1 - cos w t] 
m 

where    M    expresses  the modulation amplitude normalized to the 

cavity loss,   and    ^    is   the  frequency of modulation.     When   (2) 

is  introduced into   (1)   and after the change of variable    v(t)   = v(t) 

exp   (6  + g/2)   uiLt,     one   obtains  an equation that is  identical in 

form to  the equation of notion of quantum mechanics of a particle 

in  a periodic potential   (the time    t    must be  replaced by the spa- 

tial coordinate    x).    The  result of Siegman  and Kuizenga is ob- 

tained through one  further approximation.     If the modulation is 

strong,   leading to well  isolated pulses,   then     1 - cos  w t    may be 
m    J 

approximated by 1/2 (Wmt)
2 within the time interval occupied by 

the pulse.  Under this approximation the well known gaussian pulse 

solution181 is obtained,  in addition to the gaussian, higher order 

Hermite gaussian solutions are obtained as well as previously 
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pointed out by Haken and Pauthier. [14J    We were  able  to show[91 

that all pulse solutions,  except the lowest order Hermite Gaussian, 

are  unstable  for synch^nous modulation     (^    is set equal  to the 

2*/Tp    where    Tp    is  the  cavity roundtrip time  including the ad- 

ditional delay caused by dispersion of the  laser medium). 

Hence, Equation (1) describes fully the forced-modelocking 

results of Siegman and Kuizenga. Saturable absorber modelocking 

is described, when the modulation m(t) is determined self con- 

sistently with the pulse intensity passing through the saturable 

absorber. For an absorber with relaxation time fast compared to 

the pulse  duration. 

in(t) 

K) 
T-I-IXH 

where PA expresses the saturation power of the absorber, if v 

is so normalized that  |v|2  is equal to the instantaneous power 

in the pulse. The resulting nonlinear differential equation can 

be solved. The solutions are elliptic integrals which reduce to 

a secant hyperbolic in the limit of well separated pulses. [10] 

If the absorber is slow compared with the pulse duration, then 

one faces a stability problem:  if the absorber does not "shut-off" 

after passage of the pulse, perturbations following the pulse will 

grow and the solution is unstable, stable pulses can be obtained 

if the laser gain is reduced by the passage of the pulse so as to 

■ mmm 
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shut off the net gain after the pulse has passed.     Again,   under 

certain,  not too restrictive  assumptions,   the pulse  solutions  are 

secant hypcrbolics.(111     it can be  shown in general that the wings 

of pulses produced by saturable  absorber modelocking must be 

exponential,  not gaussian.[111     This  is of importance when  using 

ihese pulses  in nonlinear  time   resolved spectroscopy on  a  time 

scale  comparable  to the pulse duration.    This exponential time 

dependence of the pulse wings has been observed experimentally on 

modelocked dye  laser pulses,   15^ 

So  far we have discussed theories of    cw    passive  modelocking 

We  contend that the theories  are  relevant to the  transient build- 

up of modelocking provided certain  criteria are met.     We  further 

claim that these  criteria must be met if the  transient modelocking 

of a gain switched laser is  to provide deterministic   (nonstatistical) 

pulse trains,   repeatable   from  "shot"  to  "shot".    We  shall  come back 

to this point after a brief discussion of previous work on  the 

transient buildup of modelocked pulses. 

Much  computational work was  done  in the  literature l:L6~25J   on 

the  transient buildup of saturable  absorber modelocking.     The pre- 

vailing view was  the one originally proposed by Letokhov1171: 

The buildup of modelocked pulses  is started by initial noise  spikes 

of random width and height traveling between the  two laser reflec- 

tors.     From among these spikes,   those of largest energy are selected 

by  the   "gating action" of   the saturable absorber.     A natural  con- 

sequence  of this model is  that  the predicted pulsed output of a 

Q-switched or gain switched laser is  statistical  in nature. 

- 
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Experimentally,  no doubt,   the modelocked pulse   from gain 

switched    Nd    Glass or    Nd YAG    do exhibit statistical behavior. 

This  can be  undesirable if predictable pulses  are  to be produced 

from shot to shot.    Special experimental efforts have been made 

to produce  rcpeatable pulse  trains of modelocked pulses.    This 

has  always been  foind to necessitate operation of the   laser near 

threshold.     It is our contention  that there  is  a  limit of transient 

modelocked operation in which  the modeiocking is entirely determin- 

istic.     The steady state  theory of modeiocking bears on the build- 

up of  these   "deterministically" modelocked pulses. 

In support of this picture we  zi<.3 the  following argument. 

Initially,   the laser builds  up  from spontaneous emission no^.e. 

In order to reach power levels  that cause saturation of the  absorber, 

the power has  to grow by a  factor of    1015    or so.     Such  large 

growth  leads  to gain-bandwidth narrowing that is proportional to 

the  logarithm of the growth  factor—an appreciable   factor.    Hence 

the power traveling in one direction inside  the  cavity  is smoothed 

by  the bandwidth narrowing.     All of this  still occurs  during the 

buildup process.     Of all Fourier components—harmonics of    27r/T 
R 

--the  lowest Fourier component grows   fastest initially.     Hence 

the   "smoothed"  average   (with some statistical structure)   will 

evolve  into a growing sinusoidal perturbation of a  "dc background". 

If the system is not driven excessively above  threshold,   then  the 

time evolution of the pulse may be  treated adiabatically,   as  a 

succession of quasisteady states.     This  theory is outlined in 

Appendix II. 
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I.V.     Short Pulse Saturation of High  Pressure    SF 
■   € 

Interest in the short pulse saturation properties of SF 

has been stimulated by its usefulness as a Q switching126J L 

modelooking127! element for the P branch of the  10.4, band 

of the C02  laser. More recently, work on laser isotope separa- 

tion using SF6 has intensified that interest. [281 

Our primary motivation in carrying out the present study of 

SF6 short pulse saturation was to determine the characteristics 

of the medium appropriate to modelocking the high pressure CO,, 

laser.  The modelocking mechanism is the bleaching of the SF 
6 

absorption on the time scale of the modelocked pulses.  Thus, the 

absorption is, in part, due to a set of levels having a relaxati 

time on the order of or less ^an the typical width of the mode- 

locked pulse. .In other words, the attenuation experienced by an 

intense pulse of duration Tp in propagating through a cell of 

SF6  should be less than that experienced by a quasi-continuous 

signal of the same energy.  By quasi-continuous we mean a pulse 

of duration Tp greater than that of the modelocked pulse but 

less than the V-T relaxation time of SF . 
6 

We have  completed a set of experiments which  verify  this 

hypothesis.     By alternately  irradiating a     1 mm    long cell of    SF 
6 

with  the single mode output and the  modelocked output of a high 

pressure    TEA 002     laser we have measured the difference  in  trans- 

mission  of  the  cell  for equal  values  of the  total energy in  the 

TEA    pulse.     Single mode  operation was  achieved 

 ,       — 
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via a 2.5 cm long intracavity cell of low pressure SF  (< 1 
6 

torr).     Modelocking was produced by  an  intracavity acousto-optic 

modulator tuned to the  cavity mode  spacing at approximately    42 

MHz.     The  mode locked pulses were     2  ns     long spaced    24   ns     apart, 

thus giving approximately a    12:1    peak power enhancement over 

the single  mode    TEA    pulse  of equal energy. 

The output of the    TEA    laser was  passed through  a     3 mm 

aperture  to ensure a nearly uniform intensity distribution across 

the beam and  focussed by  a salt lens  to a     .2  mm    diameter spot 

inside  the    SFg    cell,    A second lens  recollimated the beam before 

it was  detected by  a    Au:Ge    detector.     Different values of input 

intensity were  achieved by placing calibrated    CaF2     attenuators 

in the  path  of the beam.     From the  detector the  signal was  ampli- 

fied by an amplifier which was slow     (^ 5ps)     compared to the 

TEA    pulse     K-250 ns)     so  that  its   response depended only on  the 

total energy in the    TEA    pulse.     The  amplifier output was  then 

fed into a    RIDL 400     channel pulse height analyzer which  displayed 

the distribution of transmitted    TEA    pulse energy for successive 

shots .of  the  laser.    The use of the  analyzer enabled us  to dis- 

tinguish between  shot to shot  fluctuations  in the  laser output 

energy     (^  10%)     and differences  in  absorber transmission. 

Results of the  transmission measurements  at various    SF 

pressures   for the    P(22)     line of    10.6  p C02    output are shown 

in Figure  2.     The modelocked pulse   transmission  is  always higher 

than that of the single mode pulse..     Furthermore, we observe  that 

the saturation  curves  appear  to be   roughly asymptotic  to  the  small 
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* Signal  absorption values measured by Wood et al.[29]   indicating 

that  the  absorption  cross-section  uoes not cha.qe  appreciably with 

pressure. 

The   complexity of  the energy level  structure of    SF      makes 
6 

it difficult to  analyze.     Models  developed by Burak et  al.[12]   and 

Brunet show excellent agreement with experiments  on  the     cw 

saturation of    SF6.     The  response of    SF,.     to short pulses,   how- 

ever,   is  not well  understood.     Recent work by Oppenheim and 

Kaufman  131   shows   that the pulse  saturation behavior of    SF       can 

be  dramatically different from the     cw    behavior.     However,   the 

model  adopted by Oppenheim and Kaufman  is  unrealistic  in   that it 

assumes   an  instantaneous  relaxation  rate   for th<9 excited state 

transition.    Pulse transmission measurements have also been per- 

formed by Armstrong and Gaddy, f31]   but  their model  ignores     V-V 

equilibration  and neglects  the     V3 * 2V3    excited state  absorption. 

The model's prediction of a    v6 ■> V3 + v6     relaxation time which 

is much   faster than gas kinetic  and a    V-T    time which  is  three 

orders  of magnitude   faster than previously determined values1321 

is  a measure  of its weakness. 

We have  developed a simple  closed form theory to explain  the 

saturation  curves   for both  the  single mode  and modelocked pulses. 

Our approach  is  similar to  that  of Oppenheim and Kaufman  in  that 

we  consider only the  absorption of  the    V3    mode  and neglect  the 

coupling to other vibrational modes  of the molecule,     in  contrast 

to previous work,  however, we  include   the  three   fold degeneracy 

and full    V-V    equilibration of the    Vj    mode and the saturation 

_ 
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of the excited state  absorption    V3 - 2V3.    To do so we adopt the 

model shown  in Figure  3 in which  the  following notation  is  used: 

Nr N2'  "a*1  N3        Population densities  in the three vibrational 

levels which are directly interacting with the 

incident field. 

Nll'  N22'  N33 Population densities which do not interact 

directly with  the  field. 

V 01 Absorption cross-sections of the ground state 

and  first excited state  respectively. 

R Rotational relaxation  rate. 

ßv Fraction of total number of molecules  in  the 

vth    vibrational  level which interact directly 

with  the  field. 

w Rate constant for equilibration among the 

vibrational  levels. 

We have omitted any reference to the    V-T    relaxation time because 

it is slow compared to our pulse duration.     Measured values of the 

V-T    rate place  it at    122 ps/torrt32J which is much greater than 

our    250 ns    pulsewidth even at    250  torr,     the maximum pressure 
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used in our experiments. 

The  theoretical  saturation  curves  computed  from the   above 

model are  compared  to  the experimental  single mode    P(22)     trans- 

mission  data in  Figure 4 .     Good  agreement  is   found at low pressures. 

At higher pressures,   however,     SFg     is harder  to  saturate  than  the 

model predicts.     This  discrepancy  can be  attributed to  the  coupling 

between    v3    and other vibrational modes of  the rolecule which  is 

neglected in our model.     The difference between  theory and exper- 

iment indicates  that approximately three  vibrational  modes   con- 

tribute  to  the  absorption  at pressures of    100   torr    and greater. 

The  details of thic work will be  submitted for publication. 
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Conclusions 

Of the  results obtained by the  research  summarired hero 

the most  important one  is believed  to be  the  development of a 

theory of saturable absorber modelocking.     in the process of 

its application  to    CO.,     laser modelocking a better understanding 

of    SF6    as  a modelocking absorber has been obtained.    Numerous 

publications have  resulted from the work,   some bearing specific 

acknowledgement  to  this  contract,   some which have been  conceived 

as  an outgrowth of this work while   the principal  investigator 

was on a  Jeave  of absence  at the Bell Laboratories,   in part with 

the objective  of applying the new theory of saturable  absorber 

modelocking  to the     cw    modelocked dye  laser producing subpico- 

second pulses   at the Bell Laboratories,     A list of publications, 

which grew out of this work,   published,   accepted,   and/or submitted 

is summarized below: 

With Contract Acknowledgment Published; 

[i] W. p.  Allis,  H.A. Haus,   "Electron Distributions  in Gas 

Lasers," J.  Appl.  Phys..  45,   781-791   (1974). 

Uil       H. A.  Haus,   "A Theory of Forced Modelocking," IEEE J. 

Quantum Electronics.  QE-11,   323-330   (1975) 

[iii]    H.  A. Haus,   "Theory of Modelocking with a Fast Saturable 

Absorber,"  J.  Appl.   Phys..   4£,   3049-3059   (1975) 

mmm 
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Submitted: 

[iv] P. Hagelstein, C. P. Ausschnitt, "Shape and Stability 

Dependence of Passively ModeZocked Pulses on Absorber 

Relaxation Time,"  to J. Appl.   Phys. 

Without specific contract acknowledgment,  because  carried out 

at Bell,  but conceived as  an outgrowth of the present work: 

To be  published: 

[vj H. A. Haus,   "Theory of Modelocking with Slow Saturabl c 

Absorber,"   to be  published in  J^Quantum Electronics. 

September   (1975) 

[vi]       H. A.  Haus,  C.  v.  Shank,  E.  P.   ippen,   "Shape  of Passively 

Modelocked Laser Pulses," Optics  Comm. 

Ivii]    H. A. Haus,   "Model of    cw    Modelocked Dye Laser," to J. 

Appl.   Phys. 

[viii]  H.  A. Haus,   "Parameter Ranges   for    cw    Passive  Modelocking, 
to IEEE  J.  Quantum Electronics. 
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, APpendix I. 

Shapeand Stability  Deggridgncg of Pasnivoly Modelocked 

Pulses on  Absorber  Relaxation Time 

P.  L.  Haqelstein,   C.  P.  Ausschnitt 

Research Laboratory of Electronics 

Massachusetts  Institute  of Technology 

Cambridge,   Massachusetts     02139 

Abstract 

The dependence of the saturable absorber modelocked pulse 

shape upon the relaxation time of the absorber is determined when 

the laser gain is assumed constant.  The pulses are found to be 

asymmetric with a slowly risinc edge and more rapidly decaying 

edge.  The modelocked pulsewidth is a weak function of absorber 

relaxation time T^,     becoming brooder with increasing T .  Fur- 

thermore, the pulses are found to experience a delay in traversina 

the absorber which lengthens the cavity transit time.  The growth 

of perturbations introduced into the steady state is shown to be 

bounded, indicating that stable modelocked operation is possible 

even in cases where  TA is comparable to or greater than the width 

of the steady state pulse. 
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Shape   and Stability Dependence  of Passively Modelocked 

Pulses on Absorber Relaxation  Time 

P. L. Hagelstein,  C.  P. Ausschnitt 

Introduction 

Mode-locking of a laser with a passive element has been 

studied by many authors.     Most of the  theoretical  studies  are 

either computer studies[1)   or qualitative  analytic studies  of 

pulse shaping,  without prediction of a pulse   shape121.    One 

exception is   the  recent work by Ilaus13'41,  who obtains  closed  form 

expressions  for the pulse shape produced by passive mode-locking 

in  two limiting cases:     (a)   The relaxation tine of the saturable 

absorber is short compared with the pulse width,   (b)   the  relaxa- 

tion   time  of the  absorber is much  longer than  the pulse width. 

In case   (b)   the laser gain medium must contribute to the 

pulse  shaping     "     because,  otherwise,  the system would possess 

gain  after passage of the pulse  and perturbations   following the 

pulse would experience growth;   the pulse would be unstable. 

In  this paper we  study the  intermediate  range of absorber 

relaxation  time, when the  absorber relaxation time  is  comparable 

to the pulsewidth.    We  limit our analysis to the  case where  the 

relaxation  tirse  of rhe  gain in« n i M m greatly exceeds   rhat of th< 

absorber.     Since  there may be net gain  in the system following 

I 
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the pulse when the absorber loss is relaxing (in the case of well- 

separated pulses in a system with long absorber relaxation time) 

the steady state pulse found may be unstable. The unstable nature 

of passive mode-locking with a slow absorber in the case where the 

gain is hard to saturate is an experimental fact'6^. 

Our approach is similar tc that taken by Creighton et alt7^ 

New  , and Haus   in that it focusses on modifications of a pulse 

in one round trip transit through the laser cavity.  The steady state 

is obtained by requiring the pulse to reproduce itself.  In contrast 

to Creighton, the saturable absorber modulation is included rclf 

consistently.  The gain dispersion, neglected by New and Letokhov 

in the nonlinear regime, is taken to be a major factor in the de- 

termination of pulse shape and width. 

In section I we summarize the main assumptions and derive 

the basic equation. Section II presents some features of the pulse 

shape that can be gleaned directly from the basic equation.  One 

can show that the pulse shape is in general asymmetric with a grad- 

ually rising edge,  in Section III we present computer solutions 

which confirm this prediction and yield the tv/o main pieces of 

information for the pulse as a function of TÄ,  its width and its 

net delay.  Finally, in Section IV we investigate the stability 

of the solutions and find that, to first order, perturbation growth 

is bounded. 

_M 
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I.  Assumptions and Basic Equation 

The system considered hero consists of three elements (see 

Figure 1)-the laser cavity, the active gain medium and the satur- 

able absorber.  The notation and method of derivation parallels 

that of Haus(3].  The following assumptions are made: 

(1) The system is operating in the steady-state near threshold. 

(2) The gain medium and absorber are short compared to the cavity 

length and the effect of each element on a pulse over a single pass 

is small (such that the exponential gain and loss factors can be 

expanded to first order). The pulses repeat with either an advance 

or delay from the cavity transit time, the magnitude (assumed small) 

and sign of which is to be determined by requiring the pulse to re- 

produce itself from pass to pass. 

(3) As in the fast absorber mode locking solution given by Haus, 

we consider only the case where the pulse repetition time is much 

longer than the pulsewidth. 

(4) The cavity loss is constant in time and the cavity modes are 

uniformly spaced in frequency. 

(5) The active medium is homogeneously broadened and its relaxa- 

tion time is much longer than the pulse repetition time (the steady 

state gain is approximately constant in time). 

(6) The linewidth of the gain is approximated by a Lorentzian in   ' 

frequency: 

- 
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G(w) 
G(«0) 

j (w  - u) 
1 +   °~ 

(U 

where    *o    is  the  center  frequency and    ^    is  a measur.   of the 

bandwidth.     The  pulse  is   assumed  to have  a bandwidth  snail   compared 

to the  linewidth  so  that  the  gain  can be expanded  to second order 

in  frequency.     Transforming into the  time  domain,   the   frequency de- 

pendence  becomes  an operator by  replacing     (jo))"    by     (dn/dtn) 

wherever  it occurs.     Thus,   the  gain  factor operating on the pulse 

envelope     v(t)     can be expressed  as   follows: 

exp 
.dt. 

v 2» 'V» 1   +  G(w   ) 
o 1 -l.± + 

wT   dt w. dt: 
(2) 

when operating on  the pulse envelope. 

(7)     The bandwidth of the  absorber is wide 

linewidth. 

compared to the  gain 

A two  level quantum system with saturation and relaxation de. 

scribes  the  absorber population  density difference. 

dn(t) n(t>   " n
e      cJA|v(t)|2  n(t) 

dt T -hw     A. o     A 
(3) 

v;hcrc    n(t)     is   t^c  pcpuloticr.  donsi-v  di**«»i        -       ;-♦-►, 

brxum density  difiorence,     TA    is   the  relaxation  time,  aA    is   the beam 

cross 
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section and AA is the beam cross section for the absorber. The 

degree of saturation is assumed small so that n(t) = n  in the 

saturation term of the rate equation. The relaxation time T 

is comparable to a pulscwidth. The loss duo. to the absorber is 

taken to be Mt) = aA 0A AA n (t) where eA is tho length of the 

absorber. 

A pulse passing through the reference plane (see Figure 1) on 

the n-th pass, v, (t) ,  is modified after making a round trip 

pass through the cavity such that 

vn ♦ 1^) "• 
-((u0/2Q)TR  G(d/dt) G(d/dt)   ,„ 

e       e     e       vn(t ~ V (4) 

where    exp [-.(ü)O/2Q)TR]     is   the  constant  cavity  loss   factor and 

exp(-2L(t)]     is  the  time  dependent absorber  loss   factor. 

Requiring  the pulse   to be periodic in time  and expanding the 

exponentials  to first order results in the  following constraint on 

pulse  shape: 

-~T
Rf 2Q    R ( 

1   +q   -  q  e"t/'IVt    e*'^ 7 •'      —0 

- g i + 

V dt2 a)L      dt 
(5) 

We have defined the same  quantities normalized to  the  cavity 1 

used by Haus,  namely  the   small  signal  absorber lotia 
oss 

q  = A     A     a    e 
UL 

2Q R 

    -  - -    _.. . _   ... 
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9 ■ 
G(tto) 

2Q R 

the   absorber saturation  power 

PA" 
O      A 

A A 

and  the  time  shift parameter 

2Q R 

where     6T    is  the  advance  of  the pulse  with  respect  to  the empty 

cavity  round  trip  transit. 

The  first  term on   the   left of   (5)   is   the normalized  constant ca- 

vity   loss.^ The next  two  terms  arc  the normalized  time-dependent  ab- 

sorber  loss where     q    is  a measure of the  magnitude  of  the  loss.     The 

exponential and integral are  the solution  to  the  absorber rate equation 

(3) .     The   following  term  is   the  dispersive   gain  of  the   active  medium 

[ (g/^) (d/dt)     acts  as  a delay  and     (g/o,^   dVdt2)     is  diffusive], 

where     g    is  a measure of  the magnitude  of  the  saturated gain.     The 

relative magnitudes of the  unsaturated  losses  and saturated gain  are 

such   that    1 + q  -  g  «   g.     In othGr words>  we  require   that the   lasGr 

operate  near threshold.     The   final term is  due  to pulse   advance  or 

delay,   and comes   about  from a  Taylor expansion  in   time: 

v   ', n p    % v   «. ••   - 
n R' 

dt n ^R' 5T. (6) 

The delay or advance must be determined as an eigenvalue of (5) 

______ __ 
■ ■ _ -■ 
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Equation   (5)   is  identicaJ   to   (2.6)   of Haus135,   except  that 

the  response of the saturable  absorber ii s  now  represented  in   terms 

of  an  integral.     The  equation  can  be  normalized and 

differential   form 
recast in  a 

1  +   (6  +  g)   JiJL Jl _ 
g    dx 

d2 

dx2 y - y 
dx 

d2 

dx2 

(6    +   q)    J1   P.  -1 
g   dx 

-  2y3   =  0 (7) 

where 

V(t/T    ) 
y(x)   = IL_ 

Vv(1 + 
q - g) 

(8) 

Tp = 4 V^ q - g (9) 

The  tin»  is nornallzoc, to the pulse width    Tp    of the  fast ahsorbor 

"«cloU     Tp    is  th. natura]   tinf!  Bcale of ^ ^^^^     ^^ ^ ^^    T  ^ 

the  tiro shift parater    (« + g,    with  respoct to tho cav.ty roim(]_
A' 

trip tim  as »aified by  tho lasor ^ixm u determined as  an elgenvelue 

Thoroforo,   tho  ebeorher rolaxation  tiM    TA    is tho only edjueteble 

Para^ctor in equation   (7).     l„   the,  lirait of instantaneous  relexetion, 

TA «  'p-    one obtelna tne  fast absorber equation stuaied by Heoe. 

__ MH^M 



A-9 

II.  Somo Conaoquoncos of the Basic Kquation 

We have not found a closed form solution for (5).  it is 

possible, however, to obtain some general information on the pulse 

shape by considering the significance of the various terms in (5). 

When TA -*■ 0,  it was shown by Haus that 6 + g = 0,  no advance 

or delay of the pulse takes place.  This is clear from the fact 

that the diffusion (in time) of the pulse as caused by the dis- 

persion preserves the symmetry of the pulse, and so does an absorber 

with instantaneous response. When  T ^ 0,  it is possible to 

determine the sign of  6 + g by the following reasoning:  an 

absorber with nonzero relaxation time will tend to "shave off" the 

front part of the pulse, hence causing a net delay,  6 + g < 0. 

In the wings, of the pulse the terms proportional to v2 

may be neglected.  Hence the linear equation for the pulse shape 

in the wings is given by: 

1 + q - g 1 + 
uL'dt' 

6 + g d 

U), dt 
v = 0. (10) 

The solutions of this equation are exponentials.    Hence  the  leading 

and trailing edges of the mode-locked pulses  arc exponentials,  Gxp(st) 

The  time constants of the exponentials  are  found to be: 

JL=L±Jl±   JTiHf I [ I 
*. 2g V \ 2g      / 

q  - g, (11) 

. - _*._ —. iM_». —  , 
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In  the  front end of the pulse  the growing exponential 

is   the  solution,   the   tail  end of  the pulse exhibits   the  decaying 

exponential.     Since     (6  +  g)/2g     is  negative   and    1 + q   - g >  o 

for  stability  reasons,   one   finds   for  the exponential  growth   factor 

s_    in  the   front end. 

■-■^M +   1   +  q   -  g   - ö  L q 

2g 
(12) 

The decay   factor    s+  <   0     of  the  tail end ii 

6  + 

2g 

6   +   g 

2g 
+   1   + q   -   g   > (13) 

We find that the pulses must be asymmetric, exhibiting a slowly 

rising leading edge and more rapidly decaying edge . 
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III.     Computer Solution 

Single pul« periodic solutions  to Equation   (7)   „ore  found 

by oomputer.     The pulses  „re nsyotric with the trailing „ing 

sharper than  the  rising „ing   (see  Figure 2) .    Asymmetrie pulses 

of this  type have been seen experimentally for a system in „hieh 

the absorber relaxation  time „as  shorter than  the inverse gain 

line„idth";l.    The pulse„ldth   (full width at half intensity)     T„ 

is  found to be only a wert   funetion of absorber relaxation tuJ. 

beeoming broader „ith inereasing    V     as shovn  in  rig.   3.    The'eigen- 

value     U * g)     as , tmetion of ^orhar reloxat.on  ^ ^ ^^ 

m Figure  4.    The exponential growth and deeay in  the „ings  is 

correctly predicted by   (12)   and   (13) . 

The  absorber loss as  a  funetion of time during the passage of 

a pulse  is  sho„n in Figure  2  in  the  case of „ell-separated pulses 

and long absorber relaxation  time     ,TA = 10 y .    The absorher 

loss  recovers  after the pulse has decayed.    „o„ever.  net gain exists 

in the  system for a critical  time until  the absorber loss  relaxes 

back sufficiently to cause net  loss. 

        -     -    -.. IIIIII 
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IV.    Stability 

The   fact  that there  is  net gain  in  the  system   following a 

pulse  in   the  case  of long  absorber relaxation   tin«  may  lead  to 

instability due   to perturbation  growth.     The evolution of a per- 

turbation   introduced  into  the  steady  st.te will now be  considered. 

The   rate of  change  of  a pulse  over many passes   can be written 
as 

-2-  V(t,    T)    =   -   -O 
3T 2Q 

1 + q(t)   - g (1  + 
LO, 

-Ü] + 
9t; 

w. 
JL 
it 

V(t,   T) 

(14) 

where the pulse count n has been replaced by a continuous time 

variable,  T = n-TR.  The two time variables are assumed indepen- 

dent of each other;  T measures the pulse repetitions, and t 

measures the "local" time within a pulse.  In the steady state, 

(3/3T)v(t, T) = 0. 

To investigate stability we introduce a perturbation  6v to 

the steady state pulse solution  V  The waveform in a period 

specified by T -becomes (compare Hau»' analysis in Section IV of 

Rof. [3]) 

v(t, T) = v (t) ♦ 6v(t, T) . 
(15) 

The perturbation is allowed to change on the slow time scale T. 

In the region where the perturbation does not overlap the steady 
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•state solution its influence on the absorpticn and gain can be neglected. 

Where overlap occurs the added .saturation-must be included if the per- 

turbation ia in phase with the steady state.  Stable operating regimes 

with respect to inphase perturbations have been found by Haus for the 

fast absorber. 

In the cose of the fast absorber, inphase perturbations of a stable    I 

operation decay, because the decrease of absorption caused by a perturba-    I 

tion is compensated by a larger decrease of gain.  Quadrature perturba- 

tions are neither stabilized nor destabilized.  It is reasonable to I 

assume that, in the present case of a slow absorber, the steady state 

pulse is stable with respect to inphase perturbations overlapping with 

the pulse,  on the other hand, it is clear that all perturbations fol- 

lowing the steady state pulse and not overlapping with it crow because  ' 

they do not affect the gain as produced by the steady state which 

is positive for some time following the pulse (we assume the saturable      | 

absorber relaxation time TA is long enough   that the net gain fol- 

lowing the pulse persists for at least several pulsewidths).  As the 

perturbation grows, it is pulled progressively into overlap with the 

steady state pulse.  Perturbations in quadrature with the steady state 

pulse will be least stabilised because they affect neither the gain 

nor the loss when they come into overlap with the steady state pulse. 

Our objective is to determine the maximum growth possible for quadra- 

ture perturbations. 

The evolution of the perturbation in  T is governed by the loss 

modulation  q(t)  established by the steady state pulse.  In general, 

the perturbation experiences three major changes on the slow time 

scale: 

(1)  Amplitude growth due to the excess gain, 

, — .  , 
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(2) motion toward the steady ntdte pulao duo  to the   fact that 

the  steady  state  pulse  experiences  a  delay  in  each  round   trip,   and 

(3) width  variation duo   to   the   gain  dispersion   mid  loss  modula- 

tion  curvature, 

ultimately  the perturbation moves   into  the   steady state   pulse. 

If we   assume  a gaussian  initial perturbation 

6v =  a.   exp 
(t   - t.)2 

2T.
2 

x 
(16) 

a closed   form solution   to   (12)   for   the evolution of  the  perturbation 

is possible  provided we divide   the   loss  modulation  following the 

steady state  pulse  into  two  regions   as  shown  in   Figure    5.     The  ex- 

cess  gain  is   approximated by a  straight line  in   Region   I,   where  the 

loss  is   relaxing back  after being  depleted by  the pulse;   and by a 

parabola  in   Region  II,  where   the   loss   is being depleted by  the  steady 

state  pulse.     The   results of  the   analysis  are presented below.     De- 

tails   appear in  Appendix A. 

We neglect the  change in perturbation width during its  evolution. 

For a perturbation having an initial width approximately equal to that 

of  the  steady state pulse  and much   gr-ater than  the  inverse   laser  line- 

width*,   i.e. 

T.    s    T       >> 
1 S 

2w, (17) 

the Gxprcssio..   for  the  total  «mpH tudft  growth  of  ihn  .^rl»»th«< Ion 

initiated  at     ^  =  T^/2     assumes  the   form 

u^  onW  thrG   i?-n0t contradictory   nince  the  steady  state  puls 
ur.or.  only   a   fraction  of;  the  laser   linowidth. 

—     ■        
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a ■ a.   exp 
(q + fi)wTT    T 
 lj   V 

4g /TnJ     T 

- i 
B exp ( 

I'J 

2|g + 6 

1+ - a 

v_ ,  : 2i"2\v »A i9 + «i ^r, 
f • 

Region   II Region  I 

(16) 

-     • 

The expression  is   separated  into  factors which  describe   the  growth 

in  the   two  separate  regions of  the   loss  modulation  following  the 

steady  state   pulse.     As  might he  exacted  the  growth  in  region  I  is 

directly  dependent on  the  absorber  relaxation  tine    TA,     while   that 

in  region   II   ia  only dependent on     TA    via  the  steady state   -delay* 

(g ♦  6)     and pulsewidth     TS    which   are  plotted  in  Figures  4   and 5. 

The   approximate  dependence  of perturbation  growth on   absorber 

relaxation   time  given by equation   (16)   is  illustrated  in  Figure  G. 

Also plotted  is  a  computer solution   for a gaussian perturbation 

having  an   initial width equal  to  that of  the  steady state  pulse. 

The  difference  between   the  computer  and  approximate  curves   for 

large     TA     results   from our neglect of shaping during the   growth 

of  the  perturbation  in  the  derivation of   (16). 

If,   for example,  we set  as  a  criterion   for stability   that  the 

Perturbation  amplitude  at no  time  exceed one   tenth that  of the  steady 

state  pulse,   then   for an  absorber  relaxation  time    TA/T     -  5, 

equation   (16)   requires   the  initial  perturbation  ampMtnL     J    to 

bo  at  least     40  dB    down   from the  steady state  pulse  amplitude. 

Fundamental  noise  in   the  system,   e.g.   spontaroous emission  noise, 
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certainly satisfies  this   constraint.     Other sources  of noise,   such 

as  scattering   from intracavity apertures,   might lead  to  instability. 

Thus,   stable  steady state nodelocking v/ith  slow saturable  ab- 

sorbers  is  possible   for some   regime of    T.  >  T  #     without action of 

the   laser medium as   required  for a  truly  slow saturable  absorber^ 

(TA  >>   V *     stability  is  made possible  by   the   fact that perturbations 

appearing in  the  system are not  free   to grow without bound,   but are 

constrained by   the  loss  modulation of  the   absorber  to  approach  a 

steady state   amplitude. 

-—' — 
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v. Conclusion 

Wo have obtained steady state single pulse solutions for the 

probier, of modolocking with a slow saturable absorber where the 

gain in assumed constant over a pulse repetition time and the 

pulsewidth is much less than a pulse repetition time.  The pulses 

were found to be asymmetric with a slowly rising edge and more 

rapidly decaying edge.  The modelocked pulsewidth is a weak func- 

tion of the absorber relaxation time.  I„ contrast to the assertions 

of previous authors1  we hnve found ^ ^^ ^^.^ ^ 

possible, even in cases where the absorber relaxation time T  is 

comparable to or greater than the pulsewidth.  Since the steady 

state pulsewidth utilises only a fraction of the laser linewidth, 

stable operation is possible even for u T >> 1 
L  A     * 
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Appendix A 

Evolution of a Pertuifratlon Pollowing th g   Steady  State  PUISF» 

AS illustrated i„  Figulre 5    tho loss moclulation following ^ 

gain  is approximated as  follows: 

.t..dy state pulse is „ivided into two „„ion. in which tho excesg 

4a, ^■t) 0   <   t   <  tj (A.l) 

Aqll  "   A«-   l1   - 
^I2 ^II 1 t 1 o (A.2) 

The parameters     Ag   ,     t       and     » ^u 
Jm.     Cj     and    tjj     characterize  the magnitude  and 

duration of pxce.s  gain  respectively  and  are   approximately  related 

to   the  steady  state  system parameters  as   follows: 

Agm = ! + q - g 

4" 
Ag m 

- T.   = 

'II 

1+q-g+Aq        A 

■ m 

^I'T^ V- 

_A 

2 

(A.3) 

(A.4) 

41n2 (A.5) 

intro^n* the .rProxin«tlo„ to th. time .epen-nc« of the exceee 

gain   (A.l)   and   (A.2)   into  the equation  of motion  obeyed by the 
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— 6v(t,   T)   - -2. 
3T 2Q 

Ag(t)   + ~2 9i +  liL_Uj_    3 
WL2   9t2 (0L       8t 

OV. (A.6) 

We   further assume   the  porturbat 
ion to have  a gausaian shape 

•Sva,  T)   = a   (T)   exp ft  - to(T))2 

2TO
2(T) (A.7) 

characterized by  a slowly varying anrcllt 

and width     T   (T)        r^-:*.'   i xuun     Toii)#      Initial   conditi 

to be 

mplitude a (T), timing t (T) 

ons on  the perturbation are taken 

ao(0) =.a. - 

to(0) = ^ 

V'0' ■  V 

««  use of   ...u   am,   (A.7)   in   tA-6)   ^  ^ ^  foUowin(j ^ 

e.uatiens 9overning the evolution 0t perturbation wi.tb.   tiraing ana 

arnplitude  in   Region   I. 

o _    o 

dT      2Q (,)T
2

T 
I-i      o 

fA.ej 
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dt OJ     , 
 O   _      O    Iq   +   5 

dT        2Q u. 
i +  S   h   . T- z 

tj'lg + «I   0 (A.9) 

u. da _  ~o 

dT       2Q 
Ag„   i - 'in 

U- 

'l" L      O   -' 

a. (A.10) 

If wc  restrict our attention  to cases where 

to 
9       -ÜT« 1 

WT 
2 T . 2       0 L     i       w (A.11) 

in  Region   I,   then  the width  variation  of the perturbation   can be 

neglected and solutions   for  timing and  amplitude  are   found  to be 

Aq  T . 2    / 
to(T)   ■ ti   - -:il-i~ 11 + 

cl Ag T .: 
^m i M-        / 2Q 

(A.12) 

ao(T)   = a^^  exp Ag«   i - 
ti\(>i

n AgT,\2 

'in - - 
T  + m  i 

1 + 2L- LSULÜ]/!O T   i 
Ag T Jm i 

/co       \2T 

»L     /V2Q 

The  perturbation   roaches  the boundary of Re 

at time     T ■ T-     given by 

(A.13) 

gion If     t    = 0, 
o 

- - ■   



m*~mmmmiimm^^~~~*^~*i   m  111 iwrr^mmnm^m "•"i i"" 

A-21 

U 

2Q 
Ti:=r 

t. 
i 

öS— / t (A.14) 

Aq  T . : w. 

Thu., a perturbation initiated at ^ = t. ha. an ampli tudo  at 
t    = 0 o 

a, = 

9m   . t   1 
a.   exp J^LiJ    L   I 

1 + !il 
wLA9m 

tj    g + 6| 

(A.15) 

The perturbation entere Region II „ith the initial con. 

To=Ti'     ao = aI-    Subsc!<Juont evolution of the perturbation 
is governed by equation   (A.'«)  where   ,A.2)   U usod to a„proxiro,te  ^ 

oxeess gain.     To si,„piify  the analysis w ^^  ^^ ^^ ^ 

perturbation width on entering Region  II  is  approximately equal  to 

the  steady  state  width,   i.e. 

Ti   S   Ts (A.16) 

so  that changes   in width  can be  neglected  throughout.     The  equations 

governing timing  and  amplitude evolution   then  become 

f!t 

dT 

Id 
i) 

2Q 

/ 4-     V 

u. Vt) (A.17) 
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^Ä W I ,  , 
_£  _      O      q   +    <S    2 

dT       2Q 4( 
1   - 

(A.10) 

where  the  steady  state  timing approached  by  the  perturbation  is 

that of  the  steady  state pulse,   namely 

t    =  - s 
2   *%  UL\Ti 

(A.19) 

Equation (A.17) is of the form of 

tion rate 
a relaxation equation with rel axa - 

a = Ag, 
in 

T-i) -2. 
(A.20) 

Hie  slow  time  evolution  of "  t       is  given by 

-OtT, 
to" t.«1 --  U1). (A.21) 

Integrating   (A.10)   then  givej 

a{T)   =  a-  cxp 
4    /Kg-  g^2 L  41 

'in 
(A.22) 

in  the  limit v;hore     T  >>  l/a. 

With tnr"- r.r-  u co of   (A.3)-(A.5)   cqualionc   (A.ISJ   anci   (A.22)   co^ino 

-- -■ --..-.. -   -  - - - -       
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to give equation   (14)   of the text.    Aasuinptlona   (A.11)   and   (A.16) 

restrict the  validity of  the  analysis  presented here  to cases where 

the  perturbation width  variation  can  be  neglected.     The  inclusion 

of width  variation,   however,   leads  to  a  smaller growth than  predicted 

by   (14),   so  that   (14)   represents  an  upper bound on  the possible 

perturbation  growth . 
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Figure  CapUons_ 

^?ure A-     Passively Kodelockod Laser System 

FiaurGj..     Absorber Loss   as  a Function of Time   for a Well- 

Separated Pulse with Long Absorber Relaxation Time 

EiflHg   3'     pulse Width Versus  Absorber Rel axation  Time 

EiailSLi-     Time Shift Para^tor     («  + g,     Vor!!us ^^^^ 

Relaxation  Time 

Fi^u^  5.     Perturbation  in Region of Not Gain Following the 

Steady state Pulse 

Figure 6.     Perturbati 

Time 
on Amplitude  Growth Versus  Absorber Relaxati on 
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net gain 
following pulr:o 

Finurr;   2 Absorber lost  as  a  function of tine   for a well-separated 
pulse with   long  absorber  relaxation   tine. 
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1   +   q(t) 

k-tirr;^ 

•-i0Ur0  5'     Perturbation in  Region of Mot Gain Followinq 
the  Steady State  Pulse 
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Appendix II 

Transient Buildup of Fast Saturable Absorber Modelocking 

by 

Christopher P. Ausschnitt 

Massachusetts Institute of Technology 

Research Laboratory of Electronics 

Abstract 

In  the   following paper we present a closed  form deterministic 

solution  to  the buildup of  fast saturable  absorber modelocking in 

the homorc:teously broadened laser.     The evolution of the  modelocked 

waveform from one  transit through the  laser cavity to the next is 

treated adiabatically,   as  a succession of quasisteady states.    The 

secant hyperbolic pulse  solution  found by Ilaus  is  reached in the 

limit of widely separated pulses. 

_____________ 
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Introduction 

Previous authors have taken a statistical approach to the 

study of the buildup of passive modelocking,t1-51 stating that 

the occurrence of modelocking relies on the selective bleaching 

of the absorber by the highest noise spike in a cavity transit 

time.  Although it is true that lasing initiates with spontaneous 

emission noise, two facts argue against the statistical approach: 

1. During the initial buildup of radiation in the cavity, 

where saturation of the absorber i. negligible, the bandwidth of 

the noise la narrowed in successive passes through the cavity 

due to the gain dispersion. 

2. Passive modelocking is consistently reproducible if the 

laser is operated near threshold and careful control of the system 

parameters is maintained.^ 

The first of the above observations indicates that the initial 

spontaneous emission noise is smoothed by gain-narrowing so that 

the sharp noise spikes are "washed out".  In fact, the near thres- 

hold operation, stated in the second observation, limits the in- 

itial bandwidth of the gain medium, i.e. the number of cavity modes 

which see net gain.  Thus, near threshold operation ensures that 

gain narrowing will "smooth out" the noise fluctuations.  We argue, 

therefore, that by the time the absorber saturation becomes signi- 
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ficant the oscillation  state  in the  laser can be   described by 

a perturbed single-cavity mode     (SM)     quasi-steady state. 

Consequently,   the buildup of modelocking cannot be  due  to the 

selective bleaching of  the  absorber by a noise  spike. 

We show here  that modelocking results   from the   fact that at 

a definite power level  in   the  cavity the    SM    state  to which  the 

initial noise evolves becomes unstable with respect to a sinusoidal 

perturbation.     Thus,   an expression for the modelocking threshold, 

defined as the point at which  the    SM    acquires  a sinusoidal modu- 

lation is  found.    The subsequent evolution of the system from    SM 

to steady state modelocked operation is  deterministic and is  treated 

as  a succession of  the  steady state solutions  to  the modelocking 

equation derived by Haus. [ 1 ]     Furthermore,   for each  set of system 

parameters-characterizing  the  cavity,  saturable   absorber and gain 

medium-a unique  stable  periodic pulse  solution  is   reached.     In 

the  limit of well  separated pulses  the  steady state  solution is 

that of the single secant hyperbolic pulse   found by Maus. 

■ — 
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~—The Single  Pulse Steady State MoJelocking Soluti on 

If the modelocked laser  system consists  of a short section 

of saturable  absorber and a short laser gain medium,   and under the 

assumption of weak  absorber saturation,   the  equation  governing mode- 

locking by a  fast saturable  absorber has been  shown by Haus  to be:17 3 

2 av(t,  n) 

AWC   TR 9n 

I + q  -  g  - SLbLJtf   ")l2   _ _1 81 

A pa ** at2 
v(t, n) 

(1.1) 

where 

v =  field envelope 

t  = time   "local"   to a single  cavity  round trip  transit time 

n  -  integer which  counts  the number of  round trip  transits, 

treated as  a continuum variable over many transits 

TR =  round trip  transit  time  in cavity 

Aü3c = cavity nrode  linewidth 

q  ■ small signal  absorber loss 

PA ~ saturation power of  the  absorber 

g ■ saturated gain 

wL  ■  laser medium half width 

The  saturated gain  is   related  to the power in  a single  round trip 

1 
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transit by 

g(n) 0 
(1.2) 

i + Llul 
p. L 

where     go(n)     is  the known  small  signal gain,     P       is  the  saturation 

power of  the homogoneously broadened  laser medium and  the power is 

1     / V2 

TR J -T
R/

2 

It should be noted that,   in  contrast  to the  fast absorber equation 

used by  Haus,  we have neglected  the  linewidth broadening due  to 

gain saturation by making the  substitution 

• ■ 

-SL . LJLa= JL . 
"L2        WL2       ^   ' 

The approximation  is  justified by  the  fact that the analysis  is only 

valid in  the  regime where   the  gain is  near threshold.     Thus,   gain 

variation  is negligible  compared  to  the normalized cavity  loss, 

but is significant compared to    1 + q - g.     Although  the  following 

analysis  can be carried out without making this   approximation,   the 

inclusion  of power broadening sacrifices  simplicity  for little 

additional  insight into the problem. 
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Also,   many systems  are bandwidth  limited by a dispersive 

element   (e.g.  etalon)   inside  the  laser cavity in which  case  the 

"diffusion" operator expressing pulse broadening in time  is gain 

independent. 

In  the steady state  the waveform    v    experiences no  change 

from one  transit  through  the  cavity to  the next.     Thus,     3v/3n = 0 

and equation   (1.1)   reduces  to 

1 + q  - g - qlv<t)l2   . JL^ii 

SL 
2 at2 

v(t) - 0. (1.4) 

Haus has shown that one stable solution to (1.4) is a single 

pulse 

v(t) = 

cosh ~ 
T. 

(1.5) 

where   the  pulse  parameters     vo    and    Tp    ere  determined by  the 

system parameters  via  the- eigenvalue  relations 

l   +  q-g  =  ä-2_ = 

2      P. U)   2T   
2 

A       —L     p 
(1.6) 

in conjunction with (1.2).  m the following section we show that 

the general solution to (1.4) is periodic, and that (1.5) holds 

only in the special case where  T >> T 
R    p* 
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II.     The Poriodic Steady State  Modelocking Solution 

The  secant hyperbolic steady state solution   found by Haus 

is only one  solution  to equation   (1.4).     The   fact  that  it is  a 

single pulse or  "soliton"  solution  implies  that  it  corresponds 

to  the  case where  the  cavity  transit time  is  much  longer than the 

pulsewidth,     TR »  v     so that ^  inherent periodicity of the 

system can be  ignored.     During the buildup of modelocking  from 

SM,     however,   it is  clear  that the periodicity of the  system must 

be   taken  into  account  since   the  pulsewidth    Tp     is  initially com- 

parable  to    TR.    As  a  first step toward understanding  the   transient 

buildup,   therefore,  we must  find  the periodic solution  to   (1.4). 

In  general,  equation   (1.4)   is  the equation of motion of a 

particle  in  the potential well 

u(v) =-ail+i (1 + q.g) v! + c 

A       Z 

where     C       is  a constant.     If the particle  is  launched with  zero 

velocity  at  the well height    0,     corresponding  to a displacement 

V     it oscillates between  the   turning points  defined by  the  roots 

of    U(v).     Thus,   the  solution  is  periodic,  with  time  dependence 

v(t)   = vo^l. .sn^JTTj (2>2) 
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where    sn    is  a Jacobian elliptic function of    t/i       of modulus 
[8 ) 

and,   for convenience,  we have defined the new constant    Y     as 

4P, 
C  +  1. (2.3) 

Substitution of   (2.2)   in   (1.4)   gives  the eigenvalue  relat ions 

q v. 

2PA £L
2
^

2 
(2.4) 

and 

1  + q   -  g = 
a)T

2T   2 

-L     p 

(2   -  Y) (2.5) 

which  determine  the peak  amplitude     v      and  "pulsewidth"     T 
o p 

within each period. The periodicity of the solution, which we 

require to equal the cavity transit time TR,  determines the 

constant y     via the relation 

2K(Y) = -£ 
TP 

(2.6) 

where    K    is  the  complete elliptic integral of the  first kind of 

argument    y.     In the  limit    TR »  t  #    equation   (2.6)   dictates 

that     Y ^  1       and    equations   (2.2   - 2.4)   become  the  secant 

__ 
-  - ■ 
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K^^ouc Solution and einenvaluo relations ^^ ^ ^^ (ii5 

X.«). R^ulri», th. roots of ,2.x, to be real sets ^ l 
on Yr 

0 < Y < 1 
(2.7) 

In  turn,   (2.7)   sets  limits 

Tp     via   (2.6),  nainely 
on  the  relative magnitude  of    T       and 

R 

P 

TT   <   —;   <   oo, 

T (2.8) 

The  lower  limit of   f3   a\   „ 
forn,    v     . <2'81   00'~««-  to the ease „here  the „ave- 

wavelength of which is  fitted in . . 

earner the ^ tranSit-     As n°ted 

hyperbolic pulse. nt 

The power in  a single transit U« is aeterminea by substi. 

tuting the  general solution   (2  2)   i* ~ un   »«««l   m equation   (1   3)       rru^   . of     I „i 2 »*•<»/.     The  integral 
H       over one period is expressible in ten. of    E.     the 

co^lete elliptic integral of the second kind of „g^t    Y 

so  that   (1.3)   gives 
Y' 

2v   2T 
p = - 0   p E(Y)   ■  v 2   Sill 

0    K(Y) (2.9) 
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III.  The Modelocking Threshold 

Lasing initiates when the small signal gain go  first breaks 

above the small signal loss  1 + q.  In the region °ear ^ onset 

of lasing we assume that the saturation of the absorber is negli- 

gible.  The initial buildup of the field is described by 

2  av(n, t) 

9n AwcTR 
-(l^i-li 

Lir
2     St2 

v(n, t) (3.1) 

We can express the field in the nth transit by a superposition 

of the cavity modes, namely 

v(n, t) = E V exp 
j — ^ ßk(n) dn (3.2) 

where k  is an integer which labels tne modes,  Vk  is the am- 

plitude and &k is the gain coefficient characteristic of the 

kth mode- 

Substitution of (3.2) in (3.1) give 

gain coefficient 
s an expression for the 

  ßk(n) = g(n) - (1 + q) - J^. [ k *jf 
C R HL

2 \  TR/ 
(3.3) 

The mode nearest line center  (k - 0)  experiences the most rapid 

growth duo to the band narrowing effect of the gain dispersion. 

Thus, operation on the single mode  (SM)  at line center will 
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dominate.     We  assume,   therefore,   that the  laser prior  to  the onset 

of modelocking is   .n    SM    operation,  namely that its output does 

not vary over the  transit time     T 
R 

Thus   far we have neglected the  saturation of the   absorber. 

Ultimately,  however,   the    SM    described by    vo(n)     grows  to the 

point where  the equations  describing  the  subsequent  growth of the 

field must  include  the  absorber saturation.     Hence,   the equation 

governing growth becomes 

dv
0 

an B°<n)   V"' (3.4) 

where     ßo     is  given by 

2B0(n)                                             q v 2(n) 
 — = g(n)   -   (i + q)   +  2  

c    R PA 

Note that gain dispersion plays no role in determining ß , the 

gain coefficient of the mode at line center. Since the field is 

"time  independent" within    TR     the  saturated gain  is 

g0(n) 
g(n)  =  2  

1 + -° 
(n) (3.6) 

PL 

The  modelocking  threshold  is  determined by the  value of 

vo(n)      for which  the   first modelocking solution to   (1.4)   is  ob- 
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tainod.     As shown by   (2.8),   the   first solution  is  the   case where 

the     SM    waveform acquires  a sinusoidal   ripple,  with one half 

wavelength  fitted in a round trip  transit.    Thus,   the modelocking 

threshold  is  defined by    n  =  *     SUch that 

H 

TpU) 
= "L^    H~ V  (O   = 7T 

(3.7) 

and we have 

VO(JI)   = _JI_ 
ULTR 

(3.8) 

The    SM     field must build up  to  a  value     voU,     before  node locking 
initiates. 

To provo  that the transition  fron, the    SM    to the  first „ode- 

iocking solution is deter.inistic,  we now show that a sine.oida! 

perturbation on the    SH    experiences TOre rapid growth than  the 

SM.    I„  other words,   the systen .ust ^deloo. rather than continue 
to run  in   a  single mode. 

Returning  to eauation   fl   "n     .,«   .»„ y equation   (1.1),  we  assume  a perturbed solution 
of the   form 

v(n,   t)   = v  (n)   ♦      z      6v    c 

k ^ 0      k 
2irt        ln 

— + /   sk ( 
TR 

(3.9) 
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^er.e    vo(n)     is  the  growing    SM    solution whose  gain  coefficient 

60    is  given by   (3.5) .    The  perturbation has been expanded in  the 

cavity modes.     Substituting   (3.9)   in   (1.1)   we   find that  to  first 

order    ßk(n)     is  given by 

c R 
ßk(n)   =  g(n)   -   (1  + q)   + ifl v 2 (n)   _ J^ /k  2^ 

w. 
R- 

(3.10) 

Since the perturbation is "orthogonal" to the single mode field 

over a cavity transit time, the saturated gain does not change to 

first order in the perturbation amplitude, and is still specified 

by (3.6). From (3.5) we see that the difference between :he gain 

coefficient of the single mode field and that of the perturbation 

is 

&UCTR 

(ßk - V 2a v 2 
U, 

(3.11) 

Maximum growth is experienced by the perturbation  for which    k = 1. 

Setting    ^  =  ßo     t^n extablishes  the  value  of    vo     for which  the 

perturbation  growth  first exceeds   the    SM    growth.     Clearly the 

threshold value of    vo    predicted by   (3.11)   is  the  same   as   that 

given by   (3.8).     Thus,   for    v, >  vom     the sinusoidal perturbation 
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grows   faster  than  the    SM.     Consequently,   once  the  threshold 

vo e vo(^,     is   reached»   the  system must ease  into  the modelocking 

solution. 
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JV^—The Transient Buildup Solution 

We have shown in the previous section that at a particular 

SM    field a^lUude in the cavity the single .ode  field „ust breaK 

into oscillation.     Furthermore,   the initial oscillation corresponds 

to the  first steady state solution of the TOdelocking equation. 

The transient solution  fron, the initial oscillation to the  final 

steady state  U now treated as succession of quasi-steady state 

solutions to equation   ,1.1,, where  the left hand side of the equa- 

tion dictates  a change in  the wavefor™    v(n,   t)     fro. one  transit 

to  the next. 

TO determine precisely how the waveform evolves „e constrain 

the buildup to be adiabatic. na^ly  the increase in the  field energy 

t« one transit is set equal to the energy supplied by the system in 

one  transit so' that the  total energy remains constant.    The energy 

balance equation 

AWfield -  * AW 
system (4.1) 

can be obtained directly from  (1.4)   by multiplying both sides by 

vMn,  t)     and integrating over one period or transit tine.    Thus, 

(4.1)   becomes 

dn •' 
dt " ^CTR {[g -  (1 + qn^|v|i  dt + Ä   r|vp dt 

dv 

dt 
dt} 

(4.2) 
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where    /    denotes  integration over one  period    - TR/2  <  t <  T /2 . 

We  assume   that  the  power in the   field experiences  a charge   ' 

over one  transit time given by 

P(n + 1)   =   [1 + 2a(n)l  P(n) 
(4.3) 

«here    .(„)     is  tho grouth  rate of ^  fuld ^ ^ ^^.^ 

from the energy balance equation.    Thus,   for two energy states 

which are differentiaiiy close,   the  loft hand side of the energy 

balance equation becomes  simply 

AW 
field - ^/'vl2dt " 2T

R 
a(n)   P(n) . (4.4) 

in  order  to evaluate  the  change  in  the  system energy we make 

use  of the  fact  that the  quasi-steady state  solution  for each  value 

of    n    is given by   (2.2),   namely 

v2(n, t) = SlilaU 
E[Yin)] 

P(n) 1   - Y(n)   sn2 -f- . T(n)l| 

where 

(4.5) 

x.MnJ  =^
2PAE[Y(n)]    !L, 

WL2   « PL  KfY(n)I   P(n) (4.6) 

-■ . 
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The  constant    Y(n)     and the  saturated  gain    g(n)     are  determined 

by  the  relations 

2K(Y(n)l  =  S- (4>7) 
Tp(n) 

and 

go(n) 
g(n)   =     . (4#8) 

1 + £M 
PL 

Substitution  of   (4.5)   in  the  right hand  •side of   (4.2)   and equating 

to   (4.4)   gives   the  desired expression   for    oi(n) 

a(n)   =   [g(n)   -   (1  + q) ]   +   [2  - y (n) ]   JÜÜSLL LM 
^e*» 2E[Y(n)l     P, 

(4.9) 

The equations  governing  the   transient buildup  are now com- 

plete.     The waveform    v(n,   t)     for each  value  of    n    is given by 

(4.5)   where   the pulsewidth  in each  period    T   (n) ,     the  constant 

Y(n)     and  the  saturated gain    g(n)     are determined by equations 

(4.6  - 4.8) .     The evolution of the    nth    waveform to  the     (n + 1) 

waveform is  dictated by equation   (4.3),  where  conservation of 

energy  constrains     c (n)     tobe  gi/en  by   (4.9). 

th 
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The  initial   condition on    P(n)     was  shown  in section  III 

to be 

P(.n)   =  -S 
■«•") 

The   final steady state  defined by 

v(t, n + 1)  - v(t, n)r (4>11) 

requires   that 

2rr(n) 
= g(n)   -   (1 + cj)   + 3 P^  EfT(n)l.  [2  _ y(n)]  = ^ 

Aü)cTR 2PAK[Y(n)] 

(4.12) 

We  recognize  that   (4.12)   is   the eigenvalue   relation   (2.5)   determined 

earlier to describe   the  general  steady state  solution.     Equations 

(4.12)   and   (4.6   -  4.8)   now uniquely  specify  the   final  steady state 

solution  as was  shown  in  section  II. 

Of  course,   in  cases where   the small  signal  gain of the  laser 

medium never  reaches  a constant  value   (e.g.   gain or    Q switched 

lasers)   condition   (4.11)   is never satisfied.     This does not limit 

the effectiveness  of the  analysis  provided  the  gain  variation over 

the  cavity  transit time    TR    is  small.     m   fact,   the  analysis en- 
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ables  us  to trace   the  complete evolution of  transient modelocking 

from start to  finish. 

■ 
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